Estimation of Dispersion in Orientations of Natural Fractures from Seismic Data: Application to Discrete Fracture Network Modeling

Reinaldo J Michelena*, Kevin S. Godbey, Huabing Wang, James R. Gilman and Chris K. Zahm

Examples of Fractured Shales

Marcellus shale

Geology.com

Whitby Mudstone (NE England)

Durham University

Examples of Fractured Shales

Hanover gray-green shale (NY)

SUNY Fredonia

Utica shale

AAPG (photo taken by Bob Jacobi)

© 2013 iReservoir.com, Inc.

Examples of Fractured Shales

Eagleford shale

FLICKR (photo taken by Aikko Heiwa)

Devonian Black shale

Geology.com

© 2013 iReservoir.com, Inc.

Simple Fracture Interpretation

Hanover gray-green shale (NY)

Fracture lengths and orientations

SUNY Fredonia

Fracture Lengths and Orientations

Warning: very qualitative!

Motivation

- Fracture geometry may vary significantly between (and within) shale plays
- Existing natural fractures strongly influence the effectiveness (drainage) of any stimulation program
- Depending on in-situ stress anisotropy and fracture geometry, induced fractures may reactivate, cross, dilate or be arrested by existing natural fractures

Seismic Scale Fracture Geometry

- Density: number of fractures per unit volume
- Dominant orientation: most frequent orientation in a given volume of rock
- Orientation dispersion: variability of orientations in a given volume (circular variance)

How can we estimate the different components of the fracture geometry from seismic data?

Fracture Geometry: Density

- Typically estimated from structural seismic attributes, azimuthal seismic AVO, or 3C data
- Careful calibration with log derived density information can help select the most appropriate attribute

Fracture Geometry: Orientation

- Typically estimated from structural seismic attributes, azimuthal seismic AVO, or 3C data
- We estimate orientations by computing the local gradient on selected structural attributes

Trick: eliminate the direction information by referring all angles to the interval [0, 180) degrees

From Curvature to Orientations

Curvature weighted orientation map

∧ N I

Statistics of fracture angles

Basic fracture statistics:

- Mean
- Mode
- Variance

Original Orientations

UNCONVENTIONAL
RESOURCES TECHNOLOGY CONFERENCE

Dominant Orientations

小 N I

Circular variance

• The circular variance of $\emph{\textbf{V}}$ of $\emph{\textbf{N}}$ unit vectors $\widehat{\emph{\textbf{U}}_n}$ is defined as:

$$V = 1 - R/N$$
 where

$$R = |\sum_{n=1}^{N} \widehat{U_n}|$$
 and $V \in [0,1]$

• Commonly used in DFN modeling as the Fisher coefficient \pmb{K} $\pmb{K}=1/\pmb{V}$ where

$$K \in [1, \infty)$$

Circular variance: properties

In theory, circular variance is ...

- Intrinsically a 3D, spatially varying parameter
- Designed to measure spread in directions, not orientations
- Dependent on the selection of the origin for angles

In practice, circular variance is typically ...

- Estimated from FMI data along the well path (1D data with sample bias)
- Assumed constant in the interwell region for DFN modeling
- Estimated separately for different fracture groups or families

Fracture Lengths and Orientations

Warning: very qualitative!

R/N depends on the selection of the reference axis

© 2013 iReservoir.com, Inc.

Estimation of Fracture Dispersion

 Estimate variance for two orthogonal reference axes and select the maximum

From Dispersion to Fisher Coeff.

- Limits of orientation dispersion M
 - $_{\circ}$ 2/ π (≈ 0.64) -> random fracture orientations
 - -> constant fracture orientations
- The Fisher coefficient K needed for DFN modeling can be estimated from dispersion M as

$$K = \frac{1 - 2/\pi}{1 - M}$$

$$K \in [1, \infty)$$

© 2013 iReservoir.com, Inc.

From Curvature to Dispersion

Maximum Curvature

From Curvature to Dispersion

Maximum Curvature and Orientations

From Curvature to Dispersion

R/N with respect to East

N

From Curvature to Dispersion

R/N with respect to North

N

Fracture Dispersion

© 2013 iReservoir.com, Inc.

From Seismic to DFN

Seismic constraints & DFN

~ 6,000 seismic control points

~ 60,000 DFN fracture planes

From DFN to Flow Simulation

Low Fisher, pressure at 100 days

Depletion areas (difference)

UNCONVENTIONAL
RESOURCES TECHNOLOGY CONFERENCE

Conclusions

- Seismic data can help in the characterization of fracture geometry, not only density and orientation but also orientation dispersion
- Orientation dispersion a modified version of the circular variance that is independent of direction
- Density, dominant orientation, and dispersion can be used to constrain DFN modeling
- High and low fracture dispersion flow simulation models show small differences in depletion
- More research is needed to understand the effect of dispersion in hydraulic fracturing as well as other issues such as fracturing scales, calibration with dispersion from log data, and seismic velocity anisotropy

