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Summary

The elastic constants that control P- and SV-wave prop-
agation in a transversely isotropic media can be estimated
by using P- and SV-wave traveltimes from either cross-well
or VSP geometries.The procedure consists of two steps.
First, elliptical velocity models are used to fit the travel-
times near one axis. The result is four elliptical parameters
that represent direct and normal moveout velocities near the
chosen axis for P- and SV-waves. Second, the elliptical pa-
rameters are used to solve a system of four equations and
four unknown elastic constants. The system of equations is
solved analytically yielding simple expressions for the elastic
constants as a function of direct and normal moveout veloci-
ties. For S&waves the estimation of the corresponding elas-
tic constants is easier because the phase velocity is already el-
liptical. The procedure, introduced for homogeneous media,
is generalized to heterogeneous media by using tomographic
techniques. The technique is illustrated with synthetic and
field data examples from cross-well geometries.

Introduction

The effect of velocity anisotropy on wave propagation
in homogeneous and heterogeneous media has been the sub-
ject of numerous publications. Careful forward modeling has
helped interpreters to understand how velocity anisotropy
manifests itself in field data. Few attempts have been made,
however, to estimate the parameters that describe the com-
plexity of velocity anisotropy, namely, the elastic constants.
Estimation of the elastic constants is important because it
can aid in lithologic discrimination and fracture orientation,
reveal anisotropic properties of the medium not obvious in
the data, and provide further imaging or full waveform inver-
sion algorithms with background models that can be refined
iteratively.

Previous studies that have estimated variations of anisotropy
with position have used “intermediate” models that make
simplifications about both anisotropy and heterogeneity. The
selection of the model is based on two factors: the prior infor-
mation available about the medium and the geometry used
to record the data. When selecting the model for anisotropy,
these two factors make transverse isotropy (TI) a good can-
didate because, in the one hand, TI is a very common form
of anisotropy in the subsurface and, on the other hand, the
3-D multicomponent information that is necessary to study
more complex symmetries is not usually recorded. For analo-
gous reasons, layered models (1-D) have been used routinely
to describe the heterogeneities. Therefore, not surprisingly,
several authors (Hake et al., 1984; Byun and Corrigan, 1990;
Sena, 1991) have chosen the combination l-D/T1 to describe
their models when estimating elastic constants.

Unfortunately, all the preceding methods fail when the
data are not wide aperture, which is often the case with
VSP and cross-well experiments.

We show in this paper how to obtain the elastic con-
stants that control P- and SV-wave propagation in TI media
from limited aperture traveltimes, either from VSP or from
cross-well geometries.We start by fitting the traveltimes
for P- and SV-waves with elliptical time-distance relations
near a single axis (either vertical or horizontal). The re-
sult is four velocities: two based on the time-of-arrival and
distance along a symmetry axis (the direct velocities) and
two based on the differential traveltime and differential dis-
tance as the direction is perturbed (the normal moveout ve-
locities). These four elliptical parameters are used to solve
analytically a system of four equations and four unknown
elastic constants. Since the procedure is based on fitting the
data with elliptical velocity models, it is exact only when
estimating elastic constants from SH-wave traveltimes.

The recording aperture is constrained in two different
ways. First, it should not be too small to ensure that there is
enough curvature to estimate the normal moveout velocities.
Second, it should not be too wide to ensure that the elliptical
fit remains accurate for the given wave type.

The calculations presented here are valid for homoge-
neous media. When the model is heterogeneous, it can be
described as a superposition of homogeneous regions, and the
elliptical parameters needed at each region are estimated to-
mographically, as explained by Michelena et al. (1993) and
Michelena (1992). The result is 2-D images of elastic con-
stants.

The equations we use in this paper to transform elastic
constants into elliptical parameters (forward mapping) are
not new. They are the same as the ones summarized by
Muir (1990), which can also be found in Levin (1979) and
Levin (1980). What is new is the simultaneous solution of
these equations near each axis to obtain elastic constants as
a function of elliptical parameters (inverse mapping).

We start by rederiving the basic equations of the for-
ward mapping from the expression of P- and SV-wave phase
velocities in TI media. The calculations are done near the
horizontal axis. Then, using these expressions, we solve the
inverse mapping analytically. The final section illustrates the
use of the technique when estimating the elastic constants
of homogeneous and heterogeneous media from traveltimes
measured around the horizontal.

From elastic constants to phase velocities

The phase velocity expression for P- and SV-waves in TI
media is (Auld, 1990)

where  is the phase velocity squared and  is the
phase angle from the vertical.  is the  elastic
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Estimation of elastic constants 2

modulus divided by density, with units of velocity squared;
we refer to the quantity  as an “elastic constant” in the
remainder of the paper. The plus sign  in front of the
square root corresponds to P-waves and the minus sign 
to  For  the expression for the phase
velocity is (Auld, 1990)

 =   e +   (lb)

Expanding equation (la) around  = 90 and neglecting
terms in   results in:

 =  +   e + (  +   e

    e  (     e

+   +  
  

 (2)

Choosing the positive root yields the P-wave phase velocity
near the horizontal axis, as follows:

=     (3)

whe re       

= (4)

and

W  + 
= 

  
. (5)

 is the horizontal P-wave phase velocity squared and
is the vertical normal moveout (NMO) phase ve-

locity squared. Choosing the negative root in equation (2)
yields  phase velocities near the horizontal axis, as
follows:

     (6)

where
= (7)

and

   
 + 
  

. (8)

The expression for SH-wave phase velocities near the hor-
izontal axis is

      (9)

where
= (10)

and
    (11) From traveltimes to elastic constants

In the rest of the paper we refer to the elliptical param-
eters W       and
W as  direct or NMO phase velocity squared for
P-, SV-, and SH-waves. The corresponding equations for
near vertical propagation can be obtained by interchanging
 and  cos  and sin  and  and  in equations (2)

to (11).

From phase velocities to elastic constants

When the phase angle (measured from the vertical) is
close to 90 degrees, the expressions for the elastic constants
as a function of P- and SV-wave phase velocities are obtained
by solving the system of equations (4), (5), (7), and (8), with
the following result:

 = (12a)

= (12b)

 =    

 (12c)

  +  (12d)

The estimation of W33 from near-horizontal phase velocities
[equation (12d)]is the sum of NMO velocities minus W44.
Michelena (1993) hs ows that when estimating velocities to-
mographically, NMO velocities correspond to the smallest
singular values of the problem. The largest singular val-
ues correspond to velocities estimated from rays that travel
along the axes. Therefore, as expected, estimating W33 from
cross-well traveltimes alone is a harder problem than esti-
mating W11 from the same data. The opposite is true when
estimating W33 and W11 from VSP measurements.

From traveltimes to phase velocities

Equations (3) and (6) hs ow that the phase velocities of
P- and SV-wave are elliptical near the axes of symmetry.
Those of S&waves are also elliptical [equation (lb)]. When
the phase velocity has an elliptical shape, the corresponding
impulse response is also elliptical (Levin, 1978; Byun, 1982).
Therefore, the group slowness expression that corresponds
to these equations has the general form

=    +   (13)

where  is the ray angle measured from the vertical and S*

(the ray slowness) is

 (14)

To estimate S,, we use the expression for the traveltime of
a ray that travels a distance  =  +  between two
points:

=  + (15)

This equation, which has the same form as the isotropic
moveout equation, is obtained after multiplying equation (13)
by 12.

The procedure to estimate the elastic constants of a ho-
mogeneous TI medium from traveltime measurements near
one axis of symmetry is the following:

1. Fit the traveltimes with elliptically anisotropic models,
one model for each wave type. This gives direct and
NMO group slownesses.
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3 Estimation of elastic constants

2. From the direct and NM0 group slownesses, find the
corresponding direct and NM0 phase velocities, using
equation (14).

3. From the estimated phase velocities, find the elastic
constants using the equation (12) (for cross-well geome-
tries). In the case of SH waves, the estimated phase
velocities squared are the same as the corresponding
elastic constants.

We generalized this procedure to heterogeneous media by de-
scribing the model as a superposition of homogeneous blocks.
The elliptical velocitities are estimated tomographically as
explain in Michelena et al. (1993) and Michelena (1992).

Synthetic example in homogeneous medium

Figure 1 shows the result of applying the procedure de-
scribed in the preceding section to estimate the elastic con-
stants that control P- and SV-wave propagation in a homoge-
neous TI medium. The impulse response is sampled at four
different angles near the horizontal. The elastic constants
that describe the medium are:  = 2256,  = 1919,

 = 1699, and  = 658, all with units of (ft/s). The
agreement between given and estimated impulse responses is
excellent and the error in the estimation of the elastic con-
stants is  2% for  (F) and  1% for  (C).

Figure 1: Left: impulse response for P- and SV-waves (con-
tinuous lines) compared with their elliptical approximations
around the vertical (dashed lines). All ray angles shown are
used simultaneously to calculate the elliptical approxima-
tions. Center: given impulse responses (continuous) com-
pared to the ones calculated from the estimated elastic con-
stants (dashed). Right: absolute value of the error made in
the estimation of the elastic constants. The elastic constants

             

Synthetic example in heterogeneous medium

Synthetic traveltimes for P- and SV-waves were generated
through the layered TI model shown in Figure 2 (continu-
ous lines). The ray tracing algorithm used to compute these
traveltimes is described in Michelena (1993). In order to ob-
tain the elliptical velocities that equation (12) requires, the
synthetic data were inverted tomographically as explained
by Michelena et al. (1993) and Michelena (1992). Only ray
angles between 0 and 30 degrees were used for the inversion.
Figure 2 (dashed lines) shows the result of transforming the
estimated elliptical velocities at each layer into elastic con-
stants. The agreement between given and estimated elastic
constants is very good.

Figure 2: Elastic constants that control P- and SV-wave
propagation. Continuous lines: given. Dashed lines: esti-
mated. From left to right the fourairs of curves represent

   and  respectively.  is the squared root of
 The density is assumed to be unity.

Cross-well field data example

Cross-well data were recorded at a carbonate reservoir of
the Permian Basin in west Texas. This field has large oil
reserves. It was discovered in 1926 and has been under con-
tinuous water-flooding since the 1960’s. The field produces
mainly from intertidal and shallow-shelf dolostones and silt-
stones of the Grayburg formation, which form a stratigraphic-
structural trap. Reservoir performance has been stimulated
by hydraulic fracturing.

A cylindrical piezoelectric bender was used as the source,
a linear upsweep from 250 to 2000 Hz. Well spacing is
184 feet. The receiver system was a nine-level array of hy-
drophones. Source and receiver vertical spacing was 2.5 feet,
from 1650 to 2150 feet.’ The survey consists of nearly 36000
traces (201 sources x 178 receivers) sampled at 0.2 ms. A
typical common receiver receiver gather is shown in Figure 3.
More details about the data acquisition can be found in Har-
ris et al. (1992).

Figure 4 shows the elastic constants estimated for the
field site when applying the technique previously described.

 and  (horizontal and vertical P-wave velocities, re-
spectively) vary more rapidly than  (SV-wave velocity).
The difference  alternates between zero or negative
in the interval between 1700 and 2100 feet. If we assume that
the anisotropy is caused by fine layering, these changes can
be explained by a sequence of isotropic strata and anisotropic
strata with horizontal axes of symmetry, probably vertically
fractured.

Conclusions

We have shown how to estimate the elastic constants of
homogeneous TI media from P-, SV-, and SH-wave travel-
times near a single axis of symmetry (either from VSP or
cross-well geometries). The technique uses the parameters

 location and reservoir depths are changed for purposes of
presentation in this paper.
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Estimation of elastic constants 4

Figure 3: Common receiver gather recorded at 1880 feet.
The source depth interval is 2.5 feet. The well-to-well sep-
aration is 184 feet. First arriving compressional and shear
waves are clearly visible at most vertical offsets. The target
of the experiment is a reservoir between 1850 and 1960 feet.

obtained by fitting traveltimes near one axis with elliptical
models. For SH-wave traveltimes, the estimation of the cor-
responding TI elastic constants is trivial because SH-wave
phase velocities are also elliptical in TI media. For P- and
SV-wave traveltimes, four parameters are needed to estimate
the phase velocities at all angles from measurements near one
axis. These parameters are the direct and NMO phase ve-
locities for P- and SV-waves, which can be estimated tomo-
graphically when the medium is heterogeneous. The trans-
formation from elliptical parameters to elastic constants is
simple.

Figure 4: Elastic constants (in units of velocity) estimated
at the site assuming a TI medium. Dotted line: V44. Thick-
dashed line: V13. Dotted-dashed line: V11. Thin-dashed line:
V33. Reservoir between 1850 and 1960 feet.
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